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1. Introduction

Can Jupi-ter tlach us about pulsars? The many prima facide

analogies between Jupiter and pulsars--both are oblique mag-

netic rotators generating and containing healthy fluxes of rela-

tivistic particles, both are sources of cosmic rays and radio

emissions, they even have comparable magnetic moments--make

the above question an interesting one. At a deeper level, the

recent Pioneer 10 encounter revealed a magnetic structure in

Jupiter's outer magnetosphere reminiscent of hydromagnetic out-

flow solutions postulated for pulsars (Michel, 1969, 1971) and

also suggested for Jupiter (Piddington, 1969; loannidis and

Brice, 1971; Hill et al,, 1974; Michel and Sturrock, 1974).

One way to approach the above question is to turn it around:

Can pulsar physics teach us about Jupiter? In this paper, we

treat Jupiter's magnetosphere as an astrophysicist would when

a new exotic object has just been discovered. We will impose

upon the data--and upon our conceptualizationsl--a variety of

oversimplified theoretical models whose function is to illumi-

nate broad areas of consistency or conflict between theory and

experiment. With such a procedure, we must expect that what

the models fail to explain may be fully as interesting as any

experimental number s they. happen to fit.

We compare two possible models.of Jupiter's magnetosphere

--a pulsar-like radial outflow model and an earth-like convection

model. In Chapter 2, we ask what kind of super-Alfvenic radial



outflow model does the available Pioneer 10 data seem to re-

quire. We concentrate on estimating the total.particle and

energy fluxes which must be provided by Jupiter--or its magneto-

sphere within the Alfvn radius--to power the outflow. In Chapter 3

we consider a convection model, concentrating upon weakening

the objections previou'sly held by theoreticians against a domi-

nant role for convection in Jupiter's magnetosphere.. In Chapter 4,

we report our preliminary and incomplete consideration of one

fundamental assumption underlying all outflow models and nearly

all convection models. We ask to what extent can Jupiter ac-

tually enforce corotation on its magnetosphere. Since much

of our paper is a compilation of the simple order of magnitude

estimates derivable from the various models we have posed, the

reader may wish to turn first to Chapter 5 where the point of

view which emerges from this compilation is summarized. At

present, there appears to be sufficient difficulty with the

outflow model that convection ought to be taken seriously.



4

2. A Radial Outflow Model for Jupiter's Magnetosphere

2.1 Introduction

In this chapter we ask to what extent Jupiter behaves ~like

a spinar (Morrison, 1969); to what extent does the hydromagnetic

interaction of Jupiter's spin with the solar wind determine

the structure, energy, and evolution of its magnetosphere and

possibly its spin. A basic requirement for a spinar-type so-

lution is that Jupiter possesses sources of both particles and

energy within the magnetosphere which exceed any external solar

wind particle and energy source. To aid the imagination we

will assume that Jupiter has a radial outflow solution simi-

lar to that constructed by Mestel (1968) for the magnetic de-

celeration of rotating stars. We then use Pioneer 10 measure-

ments to infer the number and energy source strengths required

to drive the postulated radial outflow (Kennel and Coroniti, 1974).

Following Maestel (1968) we assume for simplicity.that Jupiter's

rotational and magnetic dipole axes are aligned, and that Jupiter

poss.esses a centered dipole moment with equatorial field strength

of 4 Gauss. Near Jupiter the magnetic field is assumed to be

that of a rotating dipole field. This condition persists out

to a certain critical equatorial radius, where the flow and

magnetic stresses become equal. Beyond this radius we assume

that a two-dimensional radial outflow solution of the type dis-

cussed by Weber and Davis (1967) prevails near the spin-magnetic

equatorial plane. The magnetic field has only radial and azimuthal



components Br, B; the absence of the field component Bz, nor-

mal to the outflow disk, is a shortcoming of this solution.

The observations indicate that if a radial outflow solution

exists, it exists in a thin outflow disk of half-height h above

the spin-magnetic equatorial plane. We do not discuss here

what might happen to field lines above the radial outflow disk,,

although reconnection of Jovian and solar wind field lines might

produce a magnetopause similar to earth's there. The critical

radius is defined to be the Alfven point of the Weber-Davis

solution, where 4pU2/8 2 = 1, and pU2 is the dynamic pressure

of the radial outflow. The Jovicentric distance ra to.the Alfven

point is estimated by assuming that Br(ra) is roughly equal

to the vacuum dipole field BD(ra) at distance ra. Our model

is sketched in Figure 1. While Pioneer 10 did not measure a

synoptic set of hydromagnetic flow parameters, it did provide

us with the mass density ps, flow speed Us, and dynamic pres-

sure psU 2 of the solar wind upstream of Jupiter's bow shock

prior to magnetopause encounter, the Jovicentric distance to

the magnetopause rm, and, from the 10-hr "flapping" of the disk,

a rough estimate of its height h. In addition, Pioneer 10 measured

the magnetic field strength B at the magnetopause, the sign

of the azimuthal component B , and rough average values of

IB /BrI in the distant magnetosphere. We will restrict our

present discussion to published data from Pioneer 10's first

magnetopause crossing, but in principle it is an easy matter

to perform the same analysis for other magnetopause crossings.

The data are sufficient to permit us to estimate certain basic



parameters of the assumed outflow solution.

2.2 Required particle and energy outflows

If, as postulated, the radial outflow is super-Alfvenic,

it must be terminated by a fast shock near the magnetopause

which decelerates the flow as. it enters the magnetosheath.

The magnetopause fast shock differs from Jupiter's bow shock,

which decelerates the solar wind. The flows behind the bow

and magnetopause shocks would be separated by a tangential

discontinuity if strict magnetohydrodynamics were applicable.

Near the edge of the disk, z;h, the.flow is presumably Alfvenic,

and so above the disk a fast shock is not a necessary part of

the magnetopause st:ructure. In steady state, pressure equality

should apply across this system of shocks. -.Near the subsolar

point, where Pioneer 10 first encountered the magnetopause,

this Implies the rough equality

.N MU 2 -N M U ( 2. 1)m:-m sHs

where Nm and Um are the number density and radial flow velo-

city of the internal flow at the magnetopause, and Ms and Us

are the corresponding values in the solar wind ahead of the
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bow shock. MH Is the mass of a hydrogen ion, and M+ the mass

of the ions flowing out from Jupiter.

We estimate Um as follows: In the Weber-Davis solution,

assuming rm >> r a, we have the relation

B/Br = - rn/U (2,.2)

where r is the Jovicentric distance and 0 is the angular velo-

city of the field lines at r*= ra . Pioneer 10 magnetic obser-

vations (Smith et al,, 1974; E.J. Smith, private communication)

indicate that while B0/Br is highly, variable within the disk,

the time-averaged B /Br is negative--consistent with the "garden

hose" field expected with radial outflow--and its magnitude

B/Brl <1. While it is not yet entirely clear to us whether

this information applies to the center of the disk as well as

to its edges, we will explore its consequences. Inserting in-

to the relation Um = rm J Br/B the observed rm 100 R ,

0 = 0 = 1.74x 10 4 rad/sec--Jupiter's spin frequency, we find

that U 10 8 IBr/ % cm/sec. In other words, the required flow

energy is 5(M,/M)(Br/ )2 keV. From (2.1) we may now esti-

mate N at the .agnetopause

Nm = Ns(MH/ M)(Us rm) 2 (Br)2  (2.3)

and the particle number flux

NmUm (NsU2 rm0J)(MHM+) B B, (2.4.)
m s 1 J(MH/M, B CBP/
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The total particle outflux n = N U Am , where Am is the dayside

frontal area of the outflow disk, follows immediately by esti-

mati ng Am  2nr mh, whereupon

= NsU ( M JH M+) 2TT/ lj) hB /Br (2.5)

The energy outflow W = NmM +UAm is similarly estimated

W- =PsUs0 rmlhB BCI (2.6)

We may normalize i and W to S and Ws, the solar wind number

2
flux and flow energy flux crossing the area Trm

s = 2(M4M+)(Us/Um) h/ rm)

Ws (2n h/ Us B,/Br (MMHP 2(Um/US)(M+/MH) (h/rm

(2.7)

According to Wolfe et al, (1974), before the first shock

encounter, N:=-3x 10 - 2 cm 3 and UsM420 km/sec. Thus, expressing

h in units of Rj = 7x 109 cm
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Nm ~3x l 3 /10 IB rl cm3

S10 o2 8 (MHM,+)lhB/Br par/sec

s 102 (MH/ M) hB/ BrI

W 102 0OhBr/ B I(M+/MH) ergs/sec

/Ws-5 x 102 hBB I (2.8)

It seems that typical values for h- and IB/Br are a few

Rj and 1/3 respectively, so that ih%/B rl is 0(1) and IhBr/ B

is 0(10).

Equation (2.8) does not support--the notion--that particle

and energy input from the solar wind could be neglected, even

if Jupiter had a radial outflow solution. For example, the

earth's magnetosphere captures 10-3 2 of the particles crossing

rr2 ' at the earth; there :the number of particles circulating

through its magnetospheric convection pattern is _1026-27 sec

and nsI 1029 sec. Similarly, the energy dissipated by the solar

wind into the earth's magnetosphere is %1018 ergs/sec and

sC-10 20 ergs/sec. Thus,.Jupiter, strictly speaking, probably

cannot be a pure spinar. Moreover, it is difficult to see how
28 ( + )Jupiter generates particle fluxes .10 sec assuming M = MH

and e.nergy fluxes -1021 ergs/sec:within its Alfven radius.

For example, if all the ions produced by solar UV.ionization

in Jupiter's dayside Ionosphere were sucked into the radial
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outflow before recombining, a gross upper limit, only 1028 par/sec

would flow out (Hill et al., 1974). Similarly, lo's atmosphere

produces a torus of neutral gas near the orbit of lo. Some

1027neutrals/sec are required to maintain this torus (R. Carlson,

private communication). Even if all the neutrals were lost

by ioniz'ation and no charge exchange occurred, lo's ring could

not provide the required plasma number flux. Frank (1974) has

reported generation of a few hundred eV ions near Europa,

but no source strength has been given. In any case, even if

the number flux could be accounted for it is difficult to see

how the plasma generates some tens of keV mean energy-at the -

Alfven point, since the corotation energy at the Alfven point

(to be computed in Chapter 4) is onl-y a keV or so.

2.3 Summary

Several serious questions bedevil the simple radial out-

flow model for Jupiter's magnetosphere posed in this chapter.

Particle and energy sources of 1028 par/sec and 1021 ergs/sec

respectively must be found within the Alfvn radius. It is

unlikely that photolonization In the Jovian ionosphere can pro-

duce the requisite particle source. Even if the requisite in-

ternal number and energy sources could be found, our estimates

do not make a compelling case that particle and energy input

from the solar wind can be safely neglected.



3. A Convection Model of Jupiter's Magnetosphere

3.1 Introduction

It is now abundantly clear that magnetic field line re-

connection occurs regularly and is, in fact, responsible for

convection in the earth's magnetosphere. The Dungey (1961)

model of the earth's magnetosphere is essentially correct.

Two tests indicate that reconnection at the nose of the earth's

magnetosphere occurs. First, the field lines in the earth's

polar caps are definitely open, permitting rapid access of .solar

cosmic ray electrons (Lin and Anderson, 1966). Second, the

intensity of the magnetospheric convective circulation pattern

is largest when the solar wind field is southward, the theoreti-

cally optimum configuration for reconnection at the nose of

the earth's magnetosphere.(see Arnoldy, 197:1 and references

therein). The phenomenological studies between various measur-

ables within the magnetosphere and conditions in the solar wind

seem now to be providing answers to two questions concerning

field line reconnection on which laboratory experimentation

and theory shed at best a dim light. These are "how does the

reconnection rate depend upon the relative orientations of the

magnetic field directions on either side of the neutral sheet"

and "how fast can the reconnection rate be". The answers seem

to be that except possibly for the special case where the mag-

netic fields are parallel on both sides of the neutral sheet,

some reconnection will occur (Mozer et al,, 1974). Moreover,
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the response of the magnetosphere to changes in the solar wind

field direction (Burch, 1974) suggests that the nose reconnection

rate follows small changes in the solar wind field "sweetly

and docilely". Satellite observations of several hundred kV

potentials across the earth's polar caps (Gurnett and Frank,

1973)--a significant fraction of the total solar wind Usx 8

potential across the width of the earth's magnetosphere--indi-

cate that at times, reconnection can be very rapid. In fact,

the auroral and magnetospheric substorm may well be a conse-

quence of changes in the reconnection rate. The simplest picture

of a substorm--still controversial outside UCLA--holds that

it has two phases, a "growth" and a "breakup" phase (McPherron,

1970; Coronitl and Kennel, 1973). Nose reconnection starts

the growth phase in this picture. Following an increase in

the nose reconnection rate, the convective flow increases in

intensity; magnetic flux is added to the geomagnetic tail, so

that the polar caps increase in area; and the entire magneto-

sphere goes through an identifiable sequence of configurational

changes (Coroniti and Kennel, 1972). When this has proceeded

long enough, explosive reconnection occurs in the earth's plasma

sheet 15 - 30 RE from the earth .(Nishida and Nagayama, 1973),

thereby initiating the "breakup" phase of rapid injection of

plasma into the dipolar region of the geomagnetic field and

great intensification and poleward motions of the auroral

arcs bounding the equatorward edge of the polar cap. Recently

Siscoe and Crooker (1974) have found a theoretical relation

between nose reconnection rate and the rate of energy injection
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into the inner magnetosphere which places the tail reconnection

region at 15- 30 RE, in agreement with observation.

All in all, sound advice for those constructing models

of other magnetospheres seems to be that one neglects reconnection

at his peril. If the magnetic field configuration allows for

the possibility of reconnection, it is much better to assume

that it does occur then to assume that it does not (Kennel,

1974). There is, therefore, no doubt that reconnection will

occur in Jupiter's magnetosphere. The real question is whether

it will have significant effects. We might ask, for example

whether the solar wind can dissipate as much energy into Jupiter's

magnetosphere as it seems Jupiter must provide to power the

postulated radial outflow discussed in Chapter 2. We can com-

pute an upper limit to the reconnection energy dissipation rate

as follows. The solar wind Us xs emf f across the width 3 rm

of Jupiter's magnetosphere is given by

3UsB s
f e Br~r 10 MV (3.1)e m

where Us - 400 km/sec, Bs ftly, and rm 100 RJ. The energy dis-

sipation rate W is given by computing the total current in the

reconnection region of the dayside magnetopause and multiplying

by I, assuming all the solar wind flux crossing Jupiter's magneto-

sphere is reconnected. The current per unit length along the

magnetosphere is cAB/4rr where AB is the jump in magnetic field

strength at the magnetopause. The total current I is then ap-

proximately (cAB/4n)Teff where Leff is the effective length,

normal to the ecliptic plane, of the reconnection region
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W (CAB/4n)tefff -2x 1021 ergs/sec (3.2)

where we choose ABw4y, the measured field at the magnetopause

(Smith et al., 1974) and Leff mrmo 100 Rj above. For the earth,

(3.2) yields 1019 ergs/sec.

The reconnection upper limit energy dissipation rate, (3.2),
and the energy outflow required by the radial outflow model,
(2.8), are comparable in magnitude. This suggests that even

if Jupiter did possess a strong radial outflow, it would be

unwise to neglect reconnection and convection driven by the

solar wind. Moreover, the reconnection dissipation rate is
sufficiently large to make reasonable the consideration of a

pure convection model where all the particles and energy come

from the solar wind rather than from Jupiter's inner magneto-

sphere. This we shall do in the remainder of this chapter.

In view of our discussion in Chapter 2, a reconnection model

possesses several attractive features. Since the radially ex-

tended magnetic field observed in Jupiter's outer magnetosphere

reveals the presence of significant hydromagnetic stresses,

it is likely that the hydromagnetic outflow theory discussed

in Chapter 2 may indicate at least the order of magnitude of

the grossest features of any hydromagnetic flow solution. If

so, a convection model may not have any particular difficulties

supplying the requisite number and energy fluxes circulating

through Jupiter's magnetosphere. Moreover, since convection

in the earth's magnetosphere easily creates plasma temperatures

in the ring current of some tens of keV when the solar wind
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emf is of order 100 kV, supplying high temperature plasma if-

it is needed for Jupiter seems to be no problem either.

3.2 Length of Jupiter's magnetic tail and convection flow

time

The length of Jupiter's magnetic tail may be computed,

following Dungey (1965) if I and the radius of the polar cap

rpc are known. The electric field in Jupiter's ionosphere is

of order §/2rpc in magnitude; the convection speed is there-

fore -c/2rpcBI where BI is the ionospheric magnetic field.

The foot of a field line in the ionosphere crosses the polar

cap in a time T = 4rp BICI, and the length of the tail LT - UsT .

We define rpc = Rj/ pc where Lpc is the L-shell of the

last closed field line, and estimate I as before by 3rm(UsBs/C)B

where 1 <1 parameterizes the efficiency of reconnection, whereupon

RJ BJ RJ 14
S0-m Bs UsLpc B  hours (3.3a)

L R B
T .[ 1 300 (3.3b)RJ rm Bs Lpc

In (3.3) we chose RJ/rm~ 10o2, B = 8 .Gauss, Bs - ly. Lpc is

not known. We chose Lpc 30 corresponding to the radial Jovi-

centric distance where distortions from a dipolar field begin

to become small (Smith et al.,, 1974). Choosing =-0.1, we ar-

rive at LT -3000 RJ, roughly the estimate Kennel (1973) arrived
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at by a completely different means. We note that Jupiter ro-

tates once in 14 hr minimum convection time and if 0 << 1 may

rotate many times in a convection time.

3.3 Locating Jupiter's plasmapause and magnetopause

Given Jupiter's magnetic moment M and its spin 0 and one

simple fact--that reconnection imposes a more or less uniform

electric field Ec of order pUsBs/c across the magnetosphere--

can one locate Jupiter's plasmapause and magnetopause? We be-

gin by reconstructing Brice and loannidis' (1970) model for

Jupiter's plasmapause. We assume that Jupiter is an aligned

rotator, MOn, and that corotation is imposed at the foot of

all field lines with the angular velocity Oj. Then in the spin-

magnetic equatorial plane the convection potential cpc is given by

c = Ecr sin e (3.4)

where r is the Jovicentric distance, and 8 is measured clock-

wise from the midnight meridian. The corotation electric field

ECR, for a dipole magnetic field, is

r RjB0 R 2
ECR rB J B J (3.5)

CR c c rF

and points radially outwards. B0 is the equatorial surface

field strength. At local dusk, B -i/ 2 , there is a stagnation

point in the flow where the corotation and convection speeds
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just cancel. The Jovicentric distance rp to the dusk plasma-

pause may be found by equating the magnitudes of Ec and ECR

r n OR B J R B0

[J c . [ ] (3.6)
J c s s

The corotation potential is given by

()CR CR(rp) = R L or ,JRJ1  
(3.7)

and the total corotation potential cT = PCR + Cc is

pRBR R rJ JE 80 J - +E r in ] -] (3.8)

where we have defined ePT(rO) = 0.

The plasmapause is the curve in the spin-magnetic equator

on which e = 0. At local dawn, B - -.T/2, the radius r of

the plasmapause is defined by the condition cT r, -T/2) = 0.

This leads to the equation y +2y- 1, where y = rp rp, which

has the non-trivial solution r/rp = - 1+f20.4. Thus the

plasmasphere has minimum radius 0.4 r and maximum radius r .

Using 0n = 1.75.x 10-4 rad/sec, B0 = 4 Gauss, Us = 4x 107 cm/sec,

and Bs = ly, we find rp 100// Rj.

In computing their plasmapause position Brice and loannidis

(1970) had assumed that the energy density of the convecting

plasma was very nearly zero. There were two reasons for this:

first, they assumed an undistorted dipole magnetic field every-

where; and second, they neglected all gradient drifts in arguing



that all convecting particles would follow equipotentials and

would therefore avoid the plasmapause defined by eT = 0. There-

fore, the only consistent way of locating the magnetopause was

to assume that it formed where solar wind dynamic pressure was

balanced by twice the magnetic pressure. The nose radius rm

of this dipolar magnetopause is located by the standard relation

r B2  1/6m 0 -1 55 R (3.9)
J 2nps U s

using BO = 4 Gauss, and psUs-8x 1011 ergs/cm , corresponding

to upstream solar wind parameters prior to the first Pioneer 10

magnetopause crossing (Wolfe et al., 1974).

Let us compare the mean radius of the plasmapause 0.7rp = rp

with the dipolar nose radius ro
m

-o 0.7 JJ /2 2 s 1.25 (3.10)

rm sB5

Thus Brice and loannidis found that the plasmapause extended

beyond the magnetopause. This led them and their followers

(Kennel, 1973) to suppose that convection could never be impor-

tant in Jupiter's magnetosphere, since convection could never

penetrate close to the planet. In fact, with these numbers

it was difficult to see how the flux carried by convection (if

it occurred) could ever penetrate to the frontside of the magnetosphere

There was, however, something Brice overlooked: it is

very likely that the flow speed near the plasmapause would be

super-Alfv4nic. This means that the convective flow energy
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density would exceed the magnetic energy density near the plasma-

pause and that the dipolar magnetic field would be strongly

distorted. We will establish the plausibility of this point

by a reductio ad absurdem: we will assume a dipolar field and

then compute the ratio of the E/B convection speed to the Alfven

speed CA at the mean radius of the plasmapause, 0.7 rp, where

rp is also computed assuming a dipolar field. Let us call this

ratio R. Substituting Ec  UB , and rp/RJ " [ B ] and

reducing, we find

S (7)6 R (3.11)

where N is the number density at the plasmapause. and MH is

the proton mass. Substituting Us = 4x 107 cm/sec, Bs = ly,

0Rj = 1.2x 106 cm/sec, B0 = 4 Gauss, we find for Jupiter

j - N (3.12)

whereas substituting B0 = 1/3G, Us = 4x 107, Bs  5y,

OERE = 4x 10 cm/sec, we find for a much less restrictive con-

dition for earth

-6

RE x 10 6 N (3.13)

Thus, for the flow to be sub-Alfvenic at Jupiter's plasmapause

the plasma density must satisfy N<4x 103 cm 3 , whereas at

11 4 -3earth it must satisfy N< 10 cm. On this basis we may
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conclude that.it is very likely that the convection flow is

sub-Alfv4nic at the earth's plasmapause and super-Alfvenic at

Jupiter's.

What does this all mean? It means first of all that Brice

and loannidis' (1970) computation of the plasmapause location

was incorrect since for all but the most unrealistically low

densities the super-Alfvenic flow stresses will strongly dis-

tort the dipolar magnetic field. It also means that the stan-

dard computation of the magnetopause nose radius is incorrect,

since the flow energy density beyond the plasmapause exceeds

the magnetic energy density near the magnetic equator. This

suggests that convection will push out the magnetopuase in the

magnetic equatorial plane. A full hydromagnetic theory of this

kind of flow is very difficult, and we are far from even com-

plete conceptual understanding of it, much less an analytic

theory. Nonetheless, the above arguments suggest that convection

in Jupiter's outer magnetosphere would mimic what one expects

from radial outflow solutions. Both would have relatively thin

disks of super-Alfvenic flow and radially extended magnetic

fields. Figure 2 summarizes our arguments.

At this point it is useful to note that the earth may have

Jupiter-like magnetopauses during strong convection events--

magnetic storms and substorms. The magnetometer experiment

on OGO-1 (Heppner et al,, 1967) found a large region of con-

stant magnetic field strength near the morning magnetopause,

which was pushed out farther than the calculated magnetopause

position based upon a dipole field during substorms. Figure 3
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shows one of their events in which the magnetic field strength

increased as the spacecraft crossed the magnetopause into the

magnetosheath. Heppner et al., (1967) argued that this was due

to the presence of high pressure plasma near the magnetopause.

The above arguments suggest, however, that, following substorm

breakup and during strong convection events in general, the

flow in the earth's outer magnetosphere may be super-Alfvenic

near the dipole equator, just as it is super-Alfvenic in the

plasmasheet at these times. In view of the absence of a good

theory of super-Alfvenic convection in Jupiter's outer magneto-

sphere, the possibility that earth may have such solutions is

in our opinion a very strong, reason for taking a convection

model of Jupiter's magnetosphere seriously. If the analogy

is a true one, then the observed great variability of Jupiter's

magnetopause location might have a simple explanation: it is

due to substorms.

The above arguments indicate that further studies of the

earth's dayside magnetopause might be extremely illuminating,

both in and for themselves, and as a possible analog for the

behavior of Jupiter's magnetopause. For example, it is thought

that the earth's magnetopause moves inward prior to substorm

breakup (Aubry. et al., 1970; Coroniti and Kennel, 1973); does

it move outward following breakup? Does it begin to-move out-

ward in less than the Alfve/n travel time between the tall neutral

line and the dayside magnetopause? Is the field near the magneto-

pause radially extended? Does the magnetopause bulge near the

equatorial plane following breakup?
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3.4 Summary

1. Reconnection at the nose of Jupiter's magnetosphere

can dissipate as much energy as the radial outflow solution

discussed in Chapter 2. Even if an internally driven outflow

exists, it would therefore be unwise to neglect convection.

2. Brice and.loannidis' original plasmapause solution

(1970) overlooked the likelihood that convection would be super-

Alfvenic in Jupiter's outer magnetosphere. This implies that

the standard computation of Jupiter's magnetopause nose radius

is incorrect. Just as in the radial outflow solution, convection

would push out Jupiter's magnetopause. Since either solution

has a super-Alfvnic flow near the magnetopause, shocks are

a necessary part of the magnetopause solution.

3. OGO-1 may have observed Jupiter-like earth magneto-

pauses in the local morning sector during substorms. If so,

these observations are a good reason for taking a convection

of Jupiter's magnetosphere seriously.

4. Pioneer 10 encountered magnetopauses from 100 to 240 RJ

on its outbound pass through Jupiter's dawn sector. Since with

super-Alfvenic convection the magnetopause position depends

not only on variations in the solar wind dynamic pressure but

also on variations in the convection dynamic pressure, the ob-

served variability of Jupiter's magnetopause location could

be due to substorms if, as at earth, convection is time-variable.
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4. Coupling of Jupiter's Ionosphere and Atmosphere to either

Radial Outflow or Convection Magnetospheres

4.1 Introduction

We now turn to one feature which distinguishes planetary

from pulsar magnetospheres--the existence of a neutral non-

conducting atmosphere separating the highly conducting planet

from the conducting ionosphere--where convection first inter-

acts with neutral material gravitationally bound to the planet.

This means that hydromagnetic stresses cannot be communicated

directly between the planet and ionosphere the way such stresses

are known to be communicated between the earth's ionosphere and

magnetosphere--by a circuit involving field-aligned currents

between ionosphere and magnetosphere which exert stresses as

they close by currents flowing perpendicular to the magnetic

field in the ionosphere and magnetosphere. The effect permits

significant convection in the earth's ionosphere, since a con-

vection electric field can exist in the ionosphere yet be very

small in the earth's crust. In effect, the ionospheric field

lines can "slide over" the field lines below the ionosphere

which are held in place by the high.conductivity of the earth.

For aligned rotators, rotation does not induce an elec-

-tric field, in the non-rotating frame, between the conducting

planet and conducting ionosphere. Since the conductivity law

in the onosphere ha the form j - ; /c) where 
in the ionosphere has the form J = ofE+V x where a is

Cr\ n
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the conductivity tensor and Vn the neutral velocity, there

can be an equivalent corotation electric field (Qx r)x B/c in-

duced by the rotation of the neutral atmosphere with angular

velocity 0. This makes it clear, however, that corotation can

only be enforced on the magnetosphere through upward diffusion

of atmospheric angular momentum, which then couples to the iono-

sphere through ion-neutral collisions. In steady state, the

angular momentum acquired by the magnetosphere must balance

that provided by the atmosphere (Hines, 1974).

In this chapter we investigate the validity for an aligned

rotator of one of the key assumptions underlying the discussions

of both Chapters 2 and 3. in Chapter 2 we assumed that the

solid body angular frequency 0J was imposed on all the flux tubes in-

volved in the radial outflow. The model of the plasmapause

discussed in Chapter 3 tacitly assumed that planetary corotation

could be imposed upon convecting field lines. While signifi-

cant differences exist between aligned and obl'ique rotators,

nonetheless, our discussion of the aligned rotator case

raises the question of how and to what extent corotation can

be imposed on Jupiter's ionosphere, magnetosphere, and upper

atmosphere.

4.2 Coupling of atmospheric torque to radial outflow

In this section we first compute the spindown torque T

implied by the radial outflow solution of Chapter 2. This torque

is exerted on Jupiter's ionosphere and atmosphere by a system
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of field.aligned currents threading Jupiter's polar cap, which

we sketch in Figure 4. We then estimate the torque exerted

upon the magnetic fiel,d lines of Ionospheric levels by the up-

ward vi'scous diffusion of angular momentum.

Knowing the mass outflux M r~M+, we could compute the

spindown torque Tz if we knew the Alfven radius, since according
2'

to Weber and Davis (1967), Tz = OraM. We estimate ra as fol-

lows: Assuming that U depends weakly on r, then N/Nm= (r ra ) 2

We then compute the location where 41NaM+ B (ra) = 1, where

BD is the vacuum dipole field. The result is given by

ra/Rj B /4 T U Rj/rm) (4.(Rjr

For the parameters leading to (2.8), ra 35 R . This result does

not contradict observation,since the measurable B was encountered

beyond 35 Rj (E.J. Smith, private communication), but it is

not clear that these observations support this theory.

The torque Tz then becomes

T = fr2M-2x 1023 hBcp/Br dyne-cm' (4.2)

And the rotational energy invested in the flow, TzO J is

Tz-3.5x 1019 IhB/Br ergs/sec (4.3)

We note that TzO/W< 1, again posing the question of where the-

energy in a radial outflow would come from. Assuming Jupiter's
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moment of inertia 1 104 9 gm/cm 2 , we may estimate Jupiter's

14
spindown time T from the above torque to be 3x 10 yrs, so

the torque is cosmogonically insignificant.

In his model of pulsars Sturrock (1971) pointed out that

a hydromagnetic torque is communicated to the neutron star by

a system of currents which for an aligned dipole, flow in along

field lines over the poles; across the field in the neutron

star crust, where a Jx B force opposing rotation is exerted;

and out along the magnetic field line connecting to the Alfven

point. For Jupiter, the cross-field current flows in the iono-

sphere, not in the planet.

It is worth noting that the field-aligned current flowing

out of the equatorward edge of Jupiter's polar cap should connect

to field,lines in the outflow disk. Using B 4 x 10-5 Gauss

and hz a few Rj to estimate the magnetic flux in the disk,

we find that field-aligned current should leave the ionosphere

in an annular ring of a.few hundred km thickness poleward of

the field lines connecting to the Alfven point. The field-aligned

current density then turns out to be P109 el/cm 2/sec, probably

large enough.to be unstable in Jupiter's topside ionosphere.

If such upward field-aligned currents behave as they do at earth,

we would expect them to be carried by beams of energetic elec-

trons and to produce an aurora. This current configuration

is sketched in Figure 4.

The angular momentum radiating outward is taken first from

the atmospheric neutrals at ionospheric levels, which in an

aligned rotator can only be replaced by viscous angular momen-

tum diffusion upward from below the ionosphere. Furthermore,
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the current configuration of Figure 4 makes it clear that only

the polar cap atmosphere exerts a torque on the radial outflow.

Hines (1974) has estimated the viscous diffusion of angular

momentum as follows: The atmospheric angular momentum density

is pr2 0, where p .is the atmospheric mass density, r the dis-

tance from the spin axis, and 0 the spin frequency. The angu-

lar momentum flux is 'iOd/dz)(pr 2n), where D is a kinematic dif-

fusivity and z denotes altitude. Then, treating it as a thin

disk, the torque exerted by the entire polar cap is

r
T 2Tn P rdrD(d/dz) pr2  (iTT2)r 4 D(d/dz)(pO) (4.

where rpc is the radius of the polar cap. We estimate an up-

per limit to the torque by assuming that at one atmospheric

scale height H below the ionosphere 0 = 0j. Then

Tz (T/2) pr 4cOj/H) (405)

We estimate rpc by (R r a)

According to Atreya et al. (1974) sunlight forms an iono-

sphere with a peak ion.density at the level where

ps 100 H atoms/cm3. H is the order of 10 km. While D is highly

uncertain, they chose DrO106/cm2 sec as an illustrative value.

With these values equation (4.5) becomes

Tz m 1019 10 D6 / H dyne/cm (4-)
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where pl0 is in units of 1010 H atoms/cm3 - 1.6x 10-14 g/cm3

06 is measured in units of 106 cm2/sec, and H is normalized

to 10-km.

The atmospheric torque, eq. (4.6), is some 4 orders of

magnitude smaller than the hydromagnetic torque inferred by

assuming a radial outflow solution. The atmospheric torque

could exceed the estimate (4.6) if for example, 06 is large.

According to Atreya et al. (1974), 0 is highly uncertain. Alter-

nately, the peak conductivity region of Jupiter's polar cap

ionosphere could be formed at a denser layer of Jupiter's atmo-

sphere, where p10 is large. If the photochemistry of Atreya

et al. (1974) prevails, this seems unlikely, since we have al-

ready applied their midlatitude model to the polar cap. On

the other hand, there could conceivably be energetic electron

precipitation to the polar cap. All in all, the four orders

of magnitude difference between the hydromagnetic and atmospheric

torques makes it an interesting question whether at least the

aligned rotator can support corotation.

Another way to perceive the above question, if not the

answer to it, is to estimate the moments of inertia of the polar

cap ionospheres of Jupiter and the earth.. The moment of inertia

of a thin uniform disk is I - MR2/4, a sufficient approximation

for our purposes. We estimate M by nR 2Hp where H and p are

the neutral scale heights and density of the atmosphere where

the strongest hydromagnetic coupling occurs. We estimate R

by R p/Jc where Rp is either RE or Rj. Thus, over all
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I = w/2 R Lpc)HP (4.7)

and the ratio lJ/IE is

JIE (RJ/RE) (HJ/HE)(PJ/PE)(Lc E/Lpc, j)2  (4.8)

Magnetosphere-Ionosphere coupling at earth occurs in the E-region,

where there are 1013 NO+ atoms/cme, whereas according to Atreya

et al. (1974) the coupling region for Jupiter is 1010 H atoms/cm 3 .

Hji 2 HE- IO km, (RJ RE)4  104, and Lpc.,E10, Lpcj- 35 , so

that overall I JIE* Since the greater scale of Jupiter's magneto-

sphere suggests that much larger hydromagnetic stresses will

be exerted upon its ionosphere and atmosphere than on the earth'.s,

the equality of the moments of inertia of their polar cap atmo-

spheres leads one to wonder whether Jupiter's atmosphere, acting

as a flywheel, can spin-up its magnetosphere for long.

4.3 Coupling of convection to Jupiter's ionosphere and

Atmosphere

4.3.1. Convection .in the polar cap ionosphere

Coroniti et al. (1973) and Coroniti (1974a) first pointed

out the significant effects of the.low inertia of Jupiter's

atmosphere at ionospheric levels on Jupiter's magnetosphere.

Fleshing out an idea originally proposed by Brice and McDonough
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(1973), they argued that intermittent convection events--in

effect, substorms--would couple to planetary scale atmospheric

neutral wind modes. These in turn would couple at low Jovian

latitudes to fluctuating dynamo electric fields to drive radial

diffusion of radiation belt particles with the D = D0L diffusion

coefficient required by. the observed profiles of synchrotron

radiation. They based their arguments on Jupiter's small ionosphere-

SN N,)v"1( F e d d e r a n d B a n k s ,atmosphere coupling time - (MNN MINI)in (Fedder and Banks,

1972), where MN and M I are the neutral and ion masses and NN

and N, their number densities. They estimated J m40 minutes,

much shorter than any conceivable convection time. In effect,

like the earth's F-region atmosphere, Jupiter's atmosphere at

ionospheric levels would tend to follow the ionospheric con-

vection pattern.

The above argument has led us to ask whether an aligned

rotator with Jupiter's ionospheric parameters could have a co-

rotating polar cap atmosphere at ionospheric altitudes when

reconnection drives convection through the polar cap. We shall

make our point with another reductio ad absurdem. Suppose,

as sketched in Figure 5, that corotation is rigidly enforced

throughout the polar cap. We note that a magnetosheath field

line which reconnects at the nose of Jupiter's magnetosphere

will take 5 hours to travel 100 RJ at a speed of 400 km/sec.

At this point, the magnetosheath end of the field line would

be over the polar cap while its ionospheric end would have co-

rotated to local midnight. Five hours later, the magnetosheath

end would still not have reached the tail reconnection point,
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while the ionospheric end would have corotated back to local

noon. If such a picture of convection were correct, the foot

of the field line would trace out a cycloidal pattern as it

progresses across the polar cap. But then, the lonospheric

electric field would have to be double-valued. This dilemma

Is resolved by the twist in the field lines above the polar

cap--an Alfvefn wave carrying field-aligned current whose function

is to communicate angular momentum between the ionosphere and

magnetosheath. This torque spins down the ionosphere and atmo-

sphere and spins up the magnetosheath flow. In view of Jupiter's

low atmospheric Inertia, we suspect that its polar cap atmo-

sphere should spin about once in a characteristic convection

time.

4.3.2 Enforcement of corotation

A basic assumption underlying Brice.'s models of the plasma-

pauses of Jupiter and the earth is that corotation is enforced

at the feet of the field lines. Assuming that the convective

flow in the tail is symmetric around the local midnight merid-

ian in the distant geomagnetic tail, convection at asymptoti-

cally long distances carries no net angular momentum towards

the earth. However, in the Brice solutions more mass and angu-

lar momentum flows past the dawn meridian plane beyond the plasma-

pause than flows past the evening meridian. The planet's iono-

sphere must have exerted a torque on the flow at this point.

If the dayside magnetopause were very far away the difference
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in angular momentum flowing past dawn and evening would even-

tually be restored to the Ionosphere as the flow again approaches

symmetry about the local noon meridian plane. In this case,

convection would exert no net torque on the ionosphere. How-

ever, the flux tubes cross the magnetopause into the magneto-

sheath before complete'symmetry is re-attained, and since a

significant fraction of the difference between the angular momen-

tum fluxes at dawn and evening is transferred to the magneto-

sheath, angular momentum is probably lost from this system,

although some of the angular momentum acquired by the magneto-

sheath could be restored to the earth again as the magnetosheath

plasma flows over the polar cap.

We will estimate the earth's angular momentum loss to be

the difference between that flowing past dawn and evening in

the Brice plasmapause model. We again assume the magnetic field

to be an aligned undistorted dipole and the convection elec-

tric field to be spatially uniform. A dipole field line has

the equation r LR cos2 0, where L is Mcllwain's (1961) L-shell

parameter, Rp is either planet's radius, and e is the magnetic
latitude. The distance from the spin axis r1 at any point on

a dipolar field line is r. - r cose = LRpcose . The azimuthal

velocity v of any point on the field line is related to its

,equatorial value V by v = V (L)cos3e. The angular momentum

flux of any element of mass on a given flux tube is given by

pLR pVcos where p is the mass density. The. element of meri-
2 4dional plane area of a flux tube dA is given by dA. = LdR cos 4 d,
p

so that the angular momentum flux dJ carried by a flux tube
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between L and L +dL is

2 3, 2 "e *  " 13dJ/dL - pL2R V2 V cos 3 de (4.9)

where 8* =cos 1 (1/fr) denotes the latitude where the flux tube

hits the atmosphere.

By entirely similar reasoning the mass flux M flowing be-

tween L and L+dL is given by

dM/dL = p(L)v (L)R2L Jcos 7d (4.10)
) P 0

In both (4.9) and (4.10) we assume that the particles are iso-

tropic in pitch angle so that the mass density p(L) is inde-

pendent of magnetic latitude. The total angular momentum and

mass fluxes flowing between any two L1 and L2 are

=2 r * 13
P= RL P(L)V 2L2dL cos 3ede (4.11)

13
L2 O*

M= RZj2 p(L)v LdL 0 cosede (4.12)
P L 1  0.

For the Brice model of convection, the azimuthal equatorial

speed in the dawn (+) and evening (-) meridians is

n BR 3

v C- c/B E - (c/B)EcL OR L (4.13)
crnet torue is

The net torque is
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z= R 0 Cos3 L p(L)E L3 +OR L 2L dL

m cE2

- p(L) cE L. OR L] L2dL (4. 14)

where we have neglected a weak dependence of e* on L. Lo is

the L-shell of the evening plasmapause and Lm is that of the

magnetopause in the dawn-evening meridian plane.

For the earth, Lm >>Lo, and the convection speed greatly

exceeds the corotation speed at the magnetopause. Making these

approximations we find

0B* L

Tz 1REo cos 138 m 4 -cERL6 p(L)dL} (4.15)
0 0

where we have noted that the integrals in .(4.14) depend weakly

on their lower limit.

We model p(L) by assuming that in the distant tail all

the convecting flux tubes have the same volume and density and

therefore total mass.. If, further, no mass is lost as they.

convect towards the earth, the density in the dawn or evening

meridians will vary inversely as the volume of the flux tube,

i.e., p = poL 4 where Po is a constant. With this assumption

Tz. ER L3J cos138de (4.16)3z B REL m o
o O

With the same approximations that led to (4.16), the total mass

flux carried by convection is approximately
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cE

M-2p R2 cL (4.17)

So that, finally

Tz =(2a/3)Or 1 (4.18)

where

= J0 Cos 13ed cos7ede (4.19)
0 0

and rm =LmRE* Because of the many approximations made it is

proper to take only the basic scaling Tz--OrmM, and not the

numerical factor 2a/3 seriously

For the earth, M = 200 g/sec, corresponding to

N 1026 protons/sec. Then, using IE = 7x 10-5 rad/sec and

rm 1010 cm, Tz = 1.5x 10 dyne cm, corresponding to an energy

dissipation rate TzOE= 1014 ergs/sec. Our estimate (4.13) does

not conflict with either Coleman's (1971) or Hirshberg's (1972),

both of whom estimated upper limits to the torque of.the order

1020-21 dyne-cm. Hines (1974) has estimated the torque pro-

duced by viscous diffusion in the earth's atmosphere to be of

order 1020 An/0 dyne-cm, where tA is the difference in angu-

lar velocity between the earth and the neutrals at E-region

levels. Combining Hines' estimate with (4.19), we conclude

that 6A/.s 1%, so that the earth's atmosphere can enforce co-

rotation on the convective return flow i.n Brice's earth plasma-

pause calculation.
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Can a plasmapause be formed at Jupiter? A precise evalua-

tion of this question cannot yet be formulated. Equation (4.13)

cannot be correct, since two of its basic assumptions--undistorted

dipole'field and sub-Alfvnic flow everywhere--are violated.

Nonetheless, if a plasmapause is formed, the torque should be

expressed in the form Tz = nr*2 M where R <r*<rm. Let us

estimate the convection mass flux M by 6Ms, where

As = M HNsUsr 2.2 x 1030 protons/sec, the solar wind mass flux

across the cross-section of Jupiter's magnetosphere. We com-

pute the lower estimate to the torque

Tz > JR 6Ms  3x 10226 dyne/cm (4.20)

-3 -
At earth, the trapping factor 6 -10 " - 10 2 . Thus, unless

6 <10 , even the lower estimate torque exceeds the atmospheric

torque (4.6)

We do not feel that the question of whether or not Jupiter's

atmosphere can enforce corotation can be resolved at present.

In his accompanying review article, Coroniti (1974b) suggests

that energetic electron precipitation could significantly modify

the structure of the ionosphere, and, therefore, the basis on

which the atmospheric torque (4.6).was estimated. Until model

ionospheres including electron precipitation are computed we

have no solid foundation on which to base an estimate of atmo-

spheric torque. A particularly urgent need is to evaluate the

effects of soft electron precipitation from the solar wind on

Jupiter's polar cap ionosphere. Such computations have yet
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to be carried out even for earth, except for the polar cusp

(Kennel and Rees, 1972).

We can ask, however, what would happen if no corotation

were imposed. Then the convection streamlines from the tail

would be straight lines towards the sun until that point where,

according to Bernouilli's Law, the magnetic pressure of the

dipole deflects the flow. While the flow streamlines reach

the dayside magnetopause, the energetic electrons from Jupiter's

plasmasheet might have a sharp inner boundary, as they do at

earth. We may estimate the Jovicentric distance of the mid-

night meridian inner boundary following Kennel (1969). Should

microscopic plasma turbulence keep the electron pitch angle

isotropic, the electron precipitation lifetime will approach

the electron minimum lifetime, TM. According to Kennel and

Petschek (1966), TM = 2TBL3 where TB is the electron quarter-

bounce time, 2L3 is the "mirror ratio" for dipolar field lines,

and L is the Mcllwain (1961) L-parameter. The inner boundary

of the plasma sheet is formed at that point where TM first equals

the flow characteristic time TF. Beyond this point, electrons

are lost from the flow before the tubes of force can cross a

scale length.

We shall estimate TB by LRj/vji where v1 is the electron

velocity component perpendicular to the magnetic field. We

estimate TF to be the dipolar magnetic field gradient length

LRj/3 divided by the convection speed cEc/B. Assuming that

at the inner boundary the plasma pressure does not distort the

dipolar field significantly, we may estimate the L-shell of
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of the inner boundary LB:

vgB 0  1/6 1/6
LB = [ s~s = 19(a) Rj (4.21)

Coroniti's radiation belt model (1974a) assumed that radial

diffusion carried electrons from a distant plasmapause to the

synchrotron radiation region near the planet. An inner bound-

ary was formed at Ls20 where the minimum lifetime matched the

radial diffusion scale time. However, (4.21) indicates that

if corotation were not a factor, convection could transport

energetic electrons to L - 20 directly. Or course, the esti-

mate (4.21) was based on the assumption that electrons precipi-

tate at their maximum rate. As argued previously, such pre-

cipitation could affect the coupling of atmospheric rotation

to the magnetosphere.

4.4 Summary

An aligned rotator with an ionosphere similar to that of

Atreya pt_ l_ (1974) would have difficulty enforcing corotation,

due to the very low inertia of the.atmosphere at ionospheric

altitudes. Thus, one basic assumption underlying both radial

outflow models and most convection models may be questionable.
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5. Discussion

We have treated Jupiter's magnetosphere as an astrophysicist

would when faced with incomplete observations and correspondingly

undeveloped theoretical conceptualizations. We have imposed

various simplified models on the data in order to identify broad

areas of consistency or conflict between theory and experiment.

Our major goal has been to try to decide between a radial out-

flow pulsar-like model of Jupiter's magnetosphere and an earth-

like convection model.

In Chapter 2, we imposed on the data a simple super-Alfvenic

radial outflow model for an aligned rotating dipole similar

to those constructed by Mestel (1968) for non-relativistic flows

around rotating magnetic stars and those by Michel (1969) for

relativistic flows away from rapidly rotating magnetized neutron

stars. Our aim was to estimate the internal particle and energy

sources required to drive a super-Alfvenic outflow consistent

with the Pioneer 10 measurements reported in Science. These

28
came out to be stringent: 10 particles/sec and at least

1021 ergs/sec. It is not obvious that photoelectrons from Jupiter's

ionosphere can be an adequate source of particles. On the other

hand, secondary electrons from the precipitation of energetic

electrons to Jupiter's atmosphere could conceivably be a more

potent source--a source we did not estimate. However, this

does beg the question of what magnetospheric processes ener-

gize the precipitating electrons, which would be important for

a final self-consistent treatment. Jupiter's.satellites could
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also be a significant particle source, though lo's neutral par-

ticle ring may be inadequate. None of the above arguments ad-

dress the question of where the outflowing particles get their

energy, which we estimated to be of order 50 KeV. It must be

remembered that our estimates depend completely upon interpreting

the measured Bq/Br as the garden-hose angle of a super-Alfvenic

outflow. At present, the information on B /Br near the magneto-

pause is sparse. However, if IBt/Br < 1 and if the model ap-

plies at all, the outflowing particles would have high energy

and low density.

Even if Jupiter had particle and energy sources strong

enough to drive a radial flow, our estimates indicated that

they would at best be comparable with the solar wind particle

and energy fluxes across the frontal area of Jupiter's magneto-

pause. This suggested that the solar wind could be a signifi-

cant source of particles and energy. This conclusion was bol-

stered by our estimate of the energy input due to reconnection

at Jupiter's magnetopause--again roughly 1021 ergs/sec. This

raised a class of questions which we did not address specifi-

cally. A whole spectrum of hydromagnetic models exists between

the two extremes of a pure radial outflow, with all energy and

mass fluxes provided by Jupiter itself or its inner magneto-

sphere, and a pure convection model, where all the energy and

particles come from the solar wind. Such mixed model magneto-

spheres offer many challenging theoretical problems which never

have been addressed. For example, if reconnection as well as

radial outflow is important, radial outflow solutions with magnetic
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field components normal to the flow direction are needed. Further-

more, the flows could well be super-Alfvenic, so that one might

expect shocks and other discontinuities within the magnetosphere

where the convection and radial flows clash. If we could under-

stand such flows, we might learn something about x-ray sources

in binary orbit, like Hercules X-1. It is commonly thought

that these may be spinning magnetized neutron stars which gain

energy by accretion from the atmosphere or stellar wind of its

stellar companion (e.g., Davidson and Ostriker, 1973). Since

pulsars not in binary orbit are known to be energy and particle

emitters, the possibility exists that a mixed model might ap-

ply to the x-ray sources.

We did consider qualitatively the other extreme case of

a pure convection magnetosphere, concentrating primarily on

weakening the objections previously held by the theoretical

community against an important role for convection in Jupiter's

magnetosphere. These objections were:

1. The plasmapause, according to Brice and loannidis (1970),

was so distant that convection could not transport plasma any-

where near the planet. It could not, therefore, significantly

energize particles. Furthermore, the computed plasmapause was

near or beyond the position of the magnetopause expected prior

to Pioneer 10 encounter. There was little or no room within

the magnetosphere to return magnetic flux to the dayside magneto-

pause as is required by a reconnection model.
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2. After Pioneer 10 encounter, it appeared that the ob-

served radially extended magnetic field observed in Jupiter's

outer magnetosphere simply didn't look like the earth's mag-

netic 'field. Besides the magnetopause was too far out, 100 Rj

and more, whereas Brice and loannidis (1970) and Kennel (1973)

had estimated no more than 50 R . Jupiter's outer magnetosphere,

at first glance, does resemble what one expects from a radial

outflow model.

However, in section 3, we compared the plasma densities required

to make the convection flows sub-Alfvnic at the plasmapauses

of earth and Jupiter, as is implicitly required by conventional

plasmapause models. We concluded that it is likely that Jupiter's

convection flow will be super-Alfvenic in its outer magneto-

sphere. In this case, the dynamic pressure of the convection

flow would exceed that of the magnetic field at least near the

dipole equator, and one might well expect a radially extended

magnetic field in the outer magnetosphere. In addition, the

magnetopause would be pushed out by convection. We then noted

that OGO-1 may have observed Jupiter-like earth magnetopauses

near local dawn during substorms. If the analogy is a proper

one, then the observed variability in Jupiter's magnetopause

location might be due in part to substorms or other variable

convection events.

In Chapter 4, we discussed one basic presumption under-

lying nearly all theories of Jupiter's magnetosphere: that

corotation be enforced. Again, we investigated first the simplest
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possible model--an aligned rotator. In addition, we used pub-

lished models of Jupiter's ionosphere and magnetosphere to esti-

mate the coupling of angular momentum between atmosphere, iono-

sphere, and magnetosphere. The conclusion of this straight-

forward, if oversimplified, procedure seems clear: The angu-

lar momentum flux which can diffuse upward through Jupiter's

polar cap atmosphere seems insufficient to impose corotation

upon a radial outflow with parameters similar to those in Chapter 2,

or upon the convective return flow of Chapter 3 to form a plasma-

pause. Goertz et al, (1974) argue that the observed system

III longitudes of the appearances of the peak electron flux

regions in the magnetodisk can be explained by a slippage of

the ionospheric feet of magnetospheric field lines with respect

to Jupiter, consistent with a weak coupling between planet and

magnetosphere.

If there were no corotation imposed at all--another ex-

treme limit--we estimated that convection could carry plasma-

sheet electrons to about L 20 where they might form a preci-

pitation inner boundary similar to that of earth (Vasyliunas,

1968; Kennel, 1969). In Coroniti's (1974a) radiation belt model,

a similar inner boundary was formed at L = 20 where radial dif-

fusion and electron precipitation have similar scale times.

The similarity in results is no accident, because in Coroniti's

(1974a) model radial diffusion is driven by sporadic convection

events, and he specifically presumed that convection would carry

the upper atmosphere around with it, so that the electric field

would penetrate to lowJovian L-shells.
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Chapter 4 should not be allowed to blind us to the salient

fact that the Pioneer 10 energetic particle experiments observed

a "flapping: of the high Intensity flux region of the magneto-

disk with roughly a ten hour, and not 20, 30, or 100 hour period.

Thus, some aspect of Jupiter's rotation is enforced on the magneto-

sphere. At our preseht primitive level of theoretical under-

standing, we do not know why. Perhaps the current ionospheric

models, which do not take energetic electron precipitation in-

to account, underestimate the viscous coupling of angular mo-

mentum to the atmosphere. On the other hand, it is also pos-

sible that the assumption of an aligned rotator is at fault.

In pulsar theory, there is a fundamental physical difference

between aligned and oblique rotators. An aligned rotator can

only lose angular momentum hydromagnetically by emitting par-

ticles (Goldreich and Julian, 1969; Mestel, 1969). On the other

hand, an oblique rotator can lose angular momentum even in vacuum

(Pacini, 1967). Since rotation now induces a time varying mag-

netic field, it generates magnetic dipole radiation. Similarly,

Jupiter's oblique dipole may produce an electric field in its

ionosphere which drives field-aligned currents causing the magneto-

disk to flap. Angular momentum would then be carried off by

Alfven waves propagating through the outer magnetosphere. Thus,

Chapter 4 raised interesting questions without settling them.

Nonetheless, we believe that Chapter 4 indicates that there

is a commonality of interest between Jupiter's atmospheric and

ionospheric communities, on the one hand,.and its fields and

particles community on the other. The dynamics of Jupiter's
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high latitude upper atmosphere may be controlled hydromagneti-

cally and the structure of its ionosphere may be significantly

affected by electron precipitation. Conversely, we may not

be able to understand the hydromagnetics of Jupiter's magneto-

sphere until the nature of the boundary conditions at the iono-

sphere are elucidated. Should Saturn or the other outer planets

also have magnetospheres, energetic electron precipitation might

also be important for their ionospheres, since the solar photon

flux is even smaller than at Jupiter.

How are we to decide between the convection and the radial

outflow models? Pioneers 10 and 11 will be unable to make a

simple yet decisive test. For example, a directional plasma

detector, sensitive in the energy range between 1 KeV--the co-

rotation energy at the inner edge of the magnetodisk--and 50 KeV--

the corotation energy at the magnetopause--could determine whether

the flow is antisolar or from the planet at the dawn meridian.

As it is, our best information may come from much more elabo-

rate versions of what was done in order of magnitude fashion

in this paper: comparison of magnetic field measurements with

hydromagnetic models. Several simple signatures of convection

ought to appear in the magnetic field data. For example, B /Br

could have a sign opposite to that of the conventional garden-

hose field. Here, there are two cases. The convection speed

could exceed the local corotation speed but be less the Alfvkn

speed. An onset of rapid convection would then bend the field

line towards the sun. The bend would then propagate as an Alfven
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wave.down the field-line to the ionosphere where it would exert

a stress on the atmosphere. We would expect that the anomalous

B /Br would persist for times comparable with the effective

ionosphere-atmosphere coupling time--a few hours at most. On

the other hand, where the convection speed exceeds both the

Alfven and corotation speed, a sunward B component might per-

sist for the duration of the convection event. In a reconnection

magnetosphere, we expect that tangential magnetopause stresses

will sweep the field lines back so that in the local midnight-

noon sector, B /Br will have the same sign as the garden-hose

field sufficiently near the magnetopause. Goertz et al, (1974)

have reported that Bq,/Br is often though not predominantly anti-

gardenhose, however, they are still somewhat uncertain about

their data reduction procedure for these cases. In any case,

study of sporadic B /Br anomalies might illuminate the prob-

lem of convection. In addition, one might try to establish

that magnetopause motions occur with no change in solar wind

dynamic pressure and/or are correlated following a suitable

delay with northward switches of the solar wind magnetic field.

Similarly, convection might cause anomalies in the time of magneto-

disk crossings.

The absence of plasma wave detectors on Pioneers 10 and

11 means that we really do not know whether precipitation of

electrons to the atmosphere occurs. Observation of one whistler

emission would have settled that. With suitable spectral in-

formation, and the cold plasma density inferred by detection

of the plasma frequency we could estimate the fluxes and precipitation



47

rates of electrons in the 1- 100 KeV range currently not measured.

A radial profile of whistler amplitude would enable us to in-

fer electron precipitation fluxes with sufficient accuracy to

permit believable new ionospheric models to be computed.

Despite some shortcomings, Pioneer 10, and the excitement

induced by the preparations for, and the fact of, our first

encounter with Jupiter have provided us a good start on a re-

search program which will certainly be vigorous until the end

of the century. For the stakes are high. Not only is Jupiter's

magnetosphere intrinsically interesting, but it may have al-

ready shed a little light on the earth's magnetosphere. Be-

cause of Jupiter's rotation and large magnetic moment, we are

convinced its magnetosphere will be a useful astrophysical ana-

log. It's just that, right now--at the beginning--we don't

yet know what kind of analog it will turn out to be.

Acknowledgements

We are pleased to acknowledge interesting discussions with

F.L. Scarf, P. Morrison, R. Carlson, G. Siscoe, J. Maggs,

A. Cameron, P. Coleman, M. McElroy, F. Busse, and L. Knopoff.

This work was supported by NASA grant NGL 05-007-190.



48

References

Arnoldy R.L. Signature of the interplanetary medium for sub-

storms. J. Geophys, Res, 76 5189, 1971.

Atreya S.K., Donohye T.M. and McElroy M.B. Jupiter's ionosphere:

Prospects for Pioneer 10. Science 184 154, 1974.

Aubry M.P., Russell C.T. and Kivelson M.G. On inward motion

of the magnetopause before a substorm. J. Geophys. Res.

j 7018, 1970.

Brice N.M. and loannidis G.A. The magnetospheres of Jupiter

and earth. Icarus 11 173, 1970.

Brice N. and McDonough T.R. Jupiter's radiation belts. Icarus

18 206, 1973.

Burck J.L. Observations of interactions between interplanetary

and geomagnetic fields. NASA GFSC preprint X-646-73-390,

1974.

Coleman P.J. Jr. Solar wind torque on the geomagnetic cavity.

J. Geophys. Res, 76 3800, 1971.

Coroniti F.V. Energetic electrons in Jupiter's magnetosphere.

Astrophys, J. Suppl, 27 261, 197 4a.

Coroniti F.V. Denouement of Jovian radiation belt theory.

Pres. Nell Bruce Mem. Symp, Frascati, Italy 1974b.

Coroniti F.V. and Kennel C.F. Changes in magnetospheric con-

figuration during substorm growth phase. J. Geophys. Res,

Z7 3361, 1972.

Coroniti F.V. and Kennel C.F. Can the ionosphere regulate magneto-

spheric convection? J. Geophys. Res. 78 2837, 1973.



49

Coroniti F.V., Kennel C.F. and Thorne R.M. A model for Jovian

electrons and proton fluxes. Trans. Amer. Geophys. Union

54 446, 1973.

Davidson K. and Ostriker J.P. Neutron-star accretion in a stellar

wind: Model for a pulsed x-ray source. Astrophys , J.

19 585, 1973.

Dungey J.W. Interplanetary magnetic field and the auroral zones.

Phys, Rev, Lett, 6 47, 1961.

Dungey J.W. The length of the magnetospheric tail. J. Geophys,

Res. 70 1753, 1965.

Fedder J.A. and Banks P.M. Convection electric fields and polar

thermospheric winds. J. Geophys, Res, L 2328, 1972.

Frank L.A. Plasma flow in the plasma sheet during magnetospheric

substorms. 55th Ann. Mtq,, Amer, Geophys, Union, 1974.

Goertz C.K., Northrup T.G. and Thomsen M.F. The magnetosphere

of Jupiter as observed with Pioneer 10. 2. Non-rigid

rotation of the magnetodisk. Dept. Phys, Astron. Univ,

Iowa preprint 1974.

Goldreich P. and.Julian W.H. Pulsar electrodynamics. Astrophys,

J. 157 869, 1969.

Gurnett D.A. and Frank L.A. Observed relationships between

electric fields and auroral particle precipitation. J.

Geophys, Res, 78 145, 1973.

Heppner J.P., Sugiura M., Skillman T.L., Ledley B.G. and Campbell

M. OGO-A magnetic field observations. J. Geophys, Res,

72 5417, 1967.

Hill T.W., Dessler A.J. and Michel F.C. Configuration of the



50

Jovian magnetosphere. Geophys, Res. Lett, _ in press,

1974.

Hines C.P. Solar wind torque as an inhibitor of terrestrial

rotation. J. Geophys. Res. Z2 1543, 1974.

Hirshberg J. Upper limit of the torque of the solar wind on

the earth. J. Geophys, Res, 21 4855, 1972.

loannidis G. and Brice N.M. Plasma densities in the Jovian

magnetosphere: Plasma slingshot or Maxwell demon? Icarus

14 360, 1971.

Kennel C.F. Consequences of a magnetospheric plasma. Rev.

Geophys, Space Phys, Z 379, 1969.

Kennel C.F. The magnetospheres of the planets. Space Sci,

Rev, 14 511, 1973.

Kennel C.F. What we have learned from the magnetosphere. Comm

Astrophys. Space Phys, in press, 1974.

Kennel C.F. and Coroniti F.V. Jupiter--a spinar? Astrophys.

J. Lett, submitted, 1974.

Kennel C.F. and Petschek H.E. Limit on stably trapped particle

fluxes. J, Geophys, Res. 71 1, 1966.

Kennel C.F. and Rees M.H. Dayside auroral oval plasma density

and conductivity enhancements due to magnetosheath elec-

tron precipitation. J. Geophys. Res, ]7 2294, 1972.

Lin R.P. and Anderson K.A. Evidence for connection of geomagnetic

tail lines to the interplanetary field. J. Geophys, Res,

71 4213, 1966.

Mcllwain C.D. Coordinates for mapping the distribution of mag-

netically trapped particles. J. Geophys. Res. 66 3681,



51

1961.

Mestel L. Magnetic braking by a stellar wind, I. Mon. Not,

Roy, Astron, Soc, 138 359, 1968.

McPherron R.L. Growth phase of magnet6spheric substorms. J.

Geophys. Res, 5 5592, 1970.

Michel F.C. Hydromagnetic plasma acceleration by rapidly rotating

astrophysical objects. Phys, Rev, Lett, 23 247, 1969.

Michel F.C. Nonpulsing pulsars: A standard model for theory.

Comm, Astrophys, Space Phys, 3 227, 1971.

Michel F.C. and Sturrock P.A. Centrifugal instability of the

Jovian magnetosphere and its interaction with the solar

wind. Planet, Space Sci, submitted, 1974.

Morrison P. Are quasi-stellar radio sources giant pulsars?

Astrophys, J. 157 L73, 1969.

Mozer F.S., Golzales W.D., Bogott F., Kelley M.C. and Schutz

S. High latitude electric fields and the three dimensional

interaction between the interplanetary and therrestrial

magnetic fields. J. Geophys., Res, 72 56, 1974.

Nishida A. and Nagayama N. Synoptic survey for the neutral

line in the magnetotail during the substorm expansion phase.

J. Geophys. Res, 78 3782, 1973.

Pacini F. Energy emissions from a neutron star. Nature 216

567, 1967.

Piddington J.H. Cosmic electrodynamics. Wiley-Interscience,

1969.

Siscoe G.L. and Crooker N.U. A theoretical relation between

Dst and the solar wind merging electric field. MIT preprint



52

CSR-P-74-115. 1974,

Smith E.J., Davis L. Jr., Jones D.E., Colburn D.S., Coleman

P.J., Dyal P. and Conett C.P. Magnetic field of Jupiter

and its interaction with the solar wind. Science 183

305, 1974.

Sturrock P.A. A model of pulsars. Astrophys, J. 164 529, 1971.

Vasyliunas V.M. A survey of low energy electrons in the evening

sector of the magnetosphere with OGO-I and OGO-3. J. Geophys.

Res, 2839, 1968.

Weber E.J. and Day is L. Jr. The angular momentum of the solar

wind. Astrophys, J. 148 217, 1967.

Wolfe J.H., Collard H.R., Mihalov J.D. and Intrliigator D.S.

Preliminary Pioneer 10 encounter results from the Ames

Research Center plasma analyzer experiment. Science 183

303, 1974.



53

Fiqure Captions

Figure 1. Radial Outflow Model, Jupiter is assumed to have

a centered dipole magnetic field, with dipole and spin axis

aligned. The approximately dipolar field is assumed to corotate

within the Alfvn radius. Beyond the Alfve/n radius, a two-dimensional

radial outflow sol.ution is assumed. The Alfvn radius is fixed

by assuming that the dipole and radial field components are

comparable at the Alfvn point of the radial outflow. The radial

outflow terminates in a fast shock at the magnetopause. Ap-

proximate dynamic pressure balance prevails across the magneto-

pause and bow shock. Pioneer 10 measured the upstream solar

wind flow parameters, the location of the magnetopause, and

the magnetic field near the magnetopause.

Figure 2. High B Super-Alfvenic Convection, The. Brice plasma-

pause, computed assuming an undistorted dipole field, and there-

fore zero-p sub-Alfvnic convection, would lie at 40 RJ at dawn,

100 Rj at local evening. The conventional magnetopause, com-

puted by balancing the upstream solar wind dynamic pressure

prior to Pioneer 10's first magnetopause encounter with the

magnetic pressure of the undistorted dipole, would lie at 55 RJ.

Since the conventional plasmapuase intersected the conventional

magnetopause, it was thought that convection would be unimportant

compared to corotation, particularly in view of the fact that

there would be little room for the convective return of flux

to the dayside magnetopause. However, convection beyond the
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plasmapause is likely to be super-Alfvenic. This might create

a radially extended magnetic field and push the magnetopause

beyond its conventional location near the magnetic equator.

Figure 3. A Jupiter-Like Magnetopause at Earth, Reproduced

here is a figure from Heppner et al, (1967). The top inset

shows magnetic measurements from a considerable portion of the

pass of June 8- 9, 1965; the middle inset indicates that a sub-

storm was in progress; and the bottom inset shows that the mag-

netic field was larger in themagnetosheath than in the magneto-

sphere. Could super-Alfvenic convection have caused this magnetopause?

Figure 4. Aligned Rotator Couplinq of Torque. The hydromagnetic

spin-down torque is communicated to the ionosphere and atmo-

sphere by a system of currents in at the dipole and spin axis,

across the ionosphere, and out at the boundary of the polar

cap. Where the current flows out, an aurora boreolis may be

found, if earth-like physics prevails. The J1 x B torque is

exerted first on the atmosphere at ionospheric levels. This

should be balanced by the diffusion of angular momentum upward

from the ionospheric layers below the ionosphere.

Figure 5. Coupling of Solar Wind Torque to Jupiter's Polar

Cap Ionosphere and Atmosphere, Suppose the ionospheric feet

of all field lines corotated. Then 5 hours after a field-line

reconnected at the nose, it would be over the polar cap. It's

foot would have rotated to local midnight. Five hours later,
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the field line would still not have reached the tail reconnection

point, yet its foot would be back at local noon. The twist

in the field lines corresponds to an Alfvn wave which carries

a field-aligned current into the ionosphere with the same sense

as in Figure 4. It therefore communicates angular momentum

between the ionosphere and solar wind. If Jupiter's polar cap

atmosphere has a small moment of inertia and viscous coupling

to the lower atmosphere is weak, Jupiter's polar cap atmosphere

will not corotate.
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